翻訳と辞書
Words near each other
・ Richmond Spiders baseball
・ Richmond Spiders basketball
・ Richmond Spiders football
・ Richmond Spiders football, 1881–89
・ Richmond Spiders football, 1890–99
・ Richmond Spiders football, 1900–09
・ Richmond Spiders football, 1910–19
・ Richmond Spiders football, 1920–29
・ Richmond Spiders men's basketball
・ Richmond Stakes
・ Richmond Staples Mill Road (Amtrak station)
・ Richmond Station
・ Richmond Station (California)
・ Richmond Strikers
・ Richmond Strip
Richmond surface
・ Richmond Symphony Orchestra
・ Richmond Symphony Youth Orchestra
・ Richmond Synagogue
・ Richmond Temperance and Literary Society Hall
・ Richmond temperate forests
・ Richmond Theatre
・ Richmond Theatre fire
・ Richmond Theological Institute
・ Richmond Times-Dispatch
・ Richmond Tobacco Exchange
・ Richmond Tower (Kilmainham)
・ Richmond Town Hall
・ Richmond Town Hall (New Hampshire)
・ Richmond Town Methodist Church


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Richmond surface : ウィキペディア英語版
Richmond surface

In differential geometry, a Richmond surface is a minimal surface first described by Herbert William Richmond in 1904. 〔 Jesse Douglas, Tibor Radó, The Problem of Plateau: A Tribute to Jesse Douglas & Tibor Radó, World Scientific, 1992 (p. 239-240)〕 It is a family of surfaces with one planar end and one Enneper surface-like self-intersecting end.
It has Weierstrass–Enneper parameterization f(z)=1/z^m, g(z)=z^m. This allows a parametrization based on a complex parameter as
:\begin
X(z) &= \Re(- z^/(4m+2) )\\
Y(z) &= \Re(+ i z^/(4m+2) )\\
Z(z) &= \Re(/ n )
\end

The associate family of the surface is just the surface rotated around the z-axis.
Taking ''m'' = 2 a real parametric expression becomes:〔John Oprea, The Mathematics of Soap Films: Explorations With Maple, American Mathematical Soc., 2000 〕
:\begin
X(u,v) &= (1/3)u^3 - uv^2 + \frac\\
Y(u,v) &= -u^2v + (1/3)v^3 - \frac\\
Z(u,v) &= 2u
\end

== References ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Richmond surface」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.